Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 14(1): 920-932, 2022 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-34939422

RESUMO

The synthesis of dihydroxybenzenes (DHBZ), essential chemical reagents in numerous industrial processes, with a high degree of selectivity and yield from the hydroxylation of phenol is progressively attracting great interest in the catalysis field. Furthermore, the additive manufacturing of catalysts to produce 3D printed monoliths would provide additional benefits to enhance the DHBZ synthesis performance. Herein, 3D cellular Fe/γ-Al2O3 monoliths with a total porosity of 88% and low density (0.43 g·cm-3) are printed by Robocasting from pseudoplastic Fe-metal-organic frameworks (Fe-MOF)-based aqueous boehmite inks to develop catalytic monoliths containing a Fe network of dispersed clusters (≤5 µm), nanoclusters (<50 nm), and nanoparticles (∼20 nm) into the porous ceramic skeleton. The hydroxylation of phenol in the presence of hydrogen peroxide is carried out at different reaction temperatures (65-85 °C) in a flow reactor filled with eight stacked 3D Fe/γ-Al2O3 monoliths and with the following operating conditions: Cphenol,0 = 0.33 M, Cphenol,0/CH2O2,0 = 1:1 molar, WR = 2.2 g, and space time (τ = W·QL-1) = 0-147 gcat·h·L-1. The scaffolds present a good mechanical resistance (∼1 MPa) to be employed in a catalytic reactor and do not show any cracks or damage after the chemical reaction. DHBZ selectivity (SDHBZ) of 100% with a yield (YDHBZ) of 32% due to the presence of the Fe network in the monoliths is reported at 85 °C, which represents an improved synthesis performance as compared to that obtained by using the conventional Enichem process and the well-known titanium silicalite-1 catalysts (SDHBZ = 99.1% and YDHBZ = 29.6% at 80 °C). This printing strategy allows manufacturing novel 3D structured catalysts for the synthesis of critical chemical compounds with higher reaction efficiencies.

2.
J Phys Chem B ; 115(48): 14295-300, 2011 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-22011214

RESUMO

The dispersibility in a DNA solution of bundled multiwalled carbon nanotubes (MWCNTs), having different chemical functional groups on the CNT sidewall, was investigated by optical spectroscopy. We observed that the dispersibility of nitrogen (N)-doped MWCNTs was significantly higher than that of pure MWCNTs and MWCNTs synthesized in the presence of ethanol. This result is supported by the larger amount of adsorbed DNA on N-doped MWCNTs, as well as by the higher binding energy established between nucleobases and the N-doped CNTs. Pure MWCNTs are dispersed in DNA solution via van der Waals and hydrophobic interactions; in contrast, the nitrogenated sites within N-doped MWCNTs provided additional sites for interactions that are important to disperse nanotubes in DNA solutions.


Assuntos
DNA/química , Nanotubos de Carbono/química , Nitrogênio/química , Etanol/química , Interações Hidrofóbicas e Hidrofílicas , Teoria Quântica , Termogravimetria
3.
Nanoscale ; 3(10): 4359-64, 2011 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-21909584

RESUMO

The thermal stability of nitrogen (N) functionalities on the sidewalls of N-doped multi-walled carbon nanotubes was investigated at temperatures ranging between 1000 °C and 2000 °C. The structural stability of the doped tubes was then correlated with the electrical conductivity both at the bulk and at the individual tube levels. When as-grown tubes were thermally treated at 1000 °C, we observed a very significant decrease in the electrical resistance of the individual nanotubes, from 54 kΩ to 0.5 kΩ, which is attributed to a low N doping level (e.g. 0.78 at% N). We noted that pyridine-type N was first decomposed whereas the substitutional N was stable up to 1500 °C. For nanotubes heat treated to 1800 °C and 2000 °C, the tubes exhibited an improved degree of crystallinity which was confirmed by both the low R value (I(D)/I(G)) in the Raman spectra and the presence of straight graphitic planes observed in TEM images. However, N atoms were not detected in these tubes and caused an increase in their electrical resistivity and resistance. These partially annealed doped tubes with enhanced electrical conductivities could be used in the fabrication of robust and electrically conducting composites, and these results could be extrapolated to N-doped graphene and other nanocarbons.


Assuntos
Nanotubos de Carbono/química , Nitrogênio/química , Condutividade Elétrica , Nanotubos de Carbono/ultraestrutura , Análise Espectral Raman , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...